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ON CONVERGENCE OF A DISCRETE AGGREGATE MODEL
IN POLYCRYSTALLINE PLASTICITY

KERRY S. HAVNER

Department of Civil Engineering, North Carolina State University, Raleigh

Abstract-A discrete aggregate model, recently proposed by the author [1] as a basis for quantitative studies in
polycrystalline plasticity, is extended and further analyzed herein. The discretized internal stress and strain incre
ment fields, uniquely determined from the solution of a constrained quadratic programming problem, are proved
to be strictly convergent to the solution of the corresponding continuum boundary value problem. Thus, the
model is rigorously confirmed as a rational approximation well-suited for computational investigations of
aggregate behavior.

1. INTRODUCTION

IN A recent paper [1], the author has presented a discrete polycrystalline aggregate model
suitable for calculating macroscopic stress-strain relations and aggregate yield surfaces.
The continuum boundary value problem (upon which the discretization is based) has been
chosen with the objective of simulating quasi-static, small-deformation behavior of macro
scopically homogeneous thin-walled metal tubes and flat sheet specimens. The discrete
form incorporates approximating, piecewise linear infinitesimal displacement fields within
crystal grains, but is otherwise general and includes cubic or hexagonal crystal anisotropy
and broadly defined hardening laws over crystallographic slip systems. The solution is
unique in internal stress and strain fields.

It is our purpose herein to extend the analytical foundation of the discrete model by
proving strict convergence to the (incremental) solution of the corresponding continuum
boundary value problem, which solution also is unique [2]. We thereby clearly establish
the model as a well-defined, rational approximation in the theory of small-strain poly
crystalline plasticity.

2. GENERAL SOLUTION OF THE DISCRETE MODEL

The boundary value problem is briefly described as follows. We introduce the mathe
matical model of an aggregate of identical "unit cubes", each containing a distribution of
contiguous, polyhedral crystal grains of arbitrarily chosen orientations, and consider a
"flat sheet" whose thickness is the linear dimension of the cube (1 mm, say). Then, by
adopting crystal distributions symmetric about the two bisecting planes parallel to trans
verse cube faces, biaxial macroscopic straining of the sheet produces spatially uniform
normal displacement fields (and zero tangential shearing stresses) over these faces. It also
produces (generally) non-uniform normal stress distributions whose surface integrals and
moments are the macroscopic stresses and couple-stresses due to the applied biaxial
strains. (Equivalently, the macroscopic stress components can be calculated as volume
averages of the corresponding internal stress fields [1].) Thus, our boundary value problem
is one wherein either a particular infinitesimal displacement component is prescribed on a
face Ai of the unit cube, or the associated traction is zero. (For a thorough discussion of
the rationale for selecting this mathematical model, the reader is referred to [1].)
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The crystal constitutive equations, in terms of increments, are

6~e = C6~ = ATCcA6~.

6~P = N T6y = ATNc6y

6tcr = H(y)61

and, for a critical (i.e. potentially active) slip system,

(1)

(2)

(3)

(4)

(Sa,b)

In the above, ~ and J~ are vector representations of internal stress and infinitesimal strain.
Cc denotes the crystal elastic compliance matrix referred to the geometric (lattice) axes
and A (determined by the grain orientation) is the stress vector transformation matrix from
the cube axes Xi to the lattice axes (an orthogonal rotation in six-dimensional stress space).
N is the N by 6 transformation matrix from the cube axes to the local crystallographic slip
systems and Nk is its kth row vector. The Jy are incremental plastic shears, t~r is a critical
shear stress and H(y) is a general crystal hardening matrix [2, 3]. (Opposite senses of slip
in the same crystallographic slip system are denoted by distinct k's so that JYk is always
non-negative.) We require Cc (hence C) to be positive-definite and H to be at least positive
semidefinite (including the null matrix-i.e. an elastic-perfectly plastic crystal model).
Every critical slip system must satisfy (4) and (Sa, b). An active system satisfies the equality
in (Sa) and the inequality in (Sb).

Corresponding to these general constitutive equations, the boundary value problem of
incremental response of the unit cube to an increment in aggregate macrostrain yields
unique internal stress and strain increment fields [2]. Introducing the approximation of
kinematically admissible, piecewise linear infinitesimal displacement functions, the formal
solution to the discrete model of the continuum problem can be expressed in terms of the
general matrix equation (from [1])

(6)

(8)

with the equality satisfied for each active system (JYk > 0). (In [1], the crystal tetrahedral
sub-volumes ~ of (spatially) constant microstrain fields, called crystallites, are required
to be ofequal volume. We relax that requirement herein and so define certain of the symbols
from (6) somewhat differently than in the preceding paper.) JUo is the vector of prescribed
surface displacement increments corresponding to incremental macroscopic strain JE,
15fT = (... , J'Y~)JVq, .. .), H = rH(qd, N = rNcJ and

Q = S[I - BjK - 1B[S] (7)

wherein I is an identity matrix, S = IC; 1J and K = B[SBj (the symmetric, pOSltIve
definite, aggregate elastic "stiffness" matrix). The matrices Bj (defined over nodes J of
unknown displacements) and Bo (defined over nodes JO of prescribed displacements) are
composed of 6 by 3 elements BqJ given as

{
A(q)p;J~ if J is a node of q

B -
qJ - 0 if J is not a node of q.
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The ~: in (8) are determined from the geometry of the crystallite q. Thus [1]

~~ = r!)T</JL(x),
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(9)

in which r!) is a matrix representation of the spatial gradient corresponding to the vector
representations of stress and strain (whence, r!) Tbu = b; and '@b~ = 0 in the continuum
model) and

</JL(x) = r:xL + f3Lj x j . (10)

The repeated index indicates summation and the constants r:xL, f3L j are determined from
the nodal coordinates of q through the equations </JL(xJ

) = b~, J, M = 1, ... ,4, where
b~ is the Kronecker delta. [In (6), H, Nand <51" are defined only over those crystallites q
containing potentially active slip systems.]

It is shown in [1] that the solution evaluation of(6) and (5b) can be defined as a quadratic
programming problem with linear constraints and is unique (assuming no geometric
dependence among critical slip systems within crystallites). We minimize the convex
functional

(11 )

subject to <51" ~ 0, where P = H +NQN T is positive-definite over critical systems [1].
If there is such geometric dependence, P is positive-semidefinite. The quadratic program
ming problem remains well-posed, although no longer strictly convex. The incremental
stress and strain fields are still unique, but there now can be more than one set ofincremental
shears within a particular grain minimizing 1(<51") and producing the same o~p. (For a
discussion of this point in relation to the continuum problem, see [2].) Since geometric
dependence among critical systems is immaterial in the minimization of1(bf), we disregard
it in the sequel.

In closing this review of the discrete model, we list the following general results (some
what modified from [1]) which will be required in proving convergence:

K<5Ue) = - B;SBobUo (12)

K<5D" = BTsl'Fbr (13)

<5E(e) = :FS-IQBo<5Uo (14)

<51:(e) = A.TQBo<5Uo (15)

bE" = iFBj K- 1BTSNT<5r (16)

b1:" = -ATQNT<5r. (17)

<5D(e) = (... , <5ii(e)M, ...)is the overall vector ofunknown nodal displacements corresponding
to assumed elastic response of the aggregate; <5D" = (... , <5ii(s)M, ...) is the overall vector of
"slip" displacements; b~(e), <5~(e) and <5~s, b~" are the associated stress and strain increments;
b1:(e) = (... , b~l~k/Vq, . ..); bE(e) = (... , b~l~k/Vq, . ..); b1:" = (... , <5~(q)~, .. .); and bE" =
(... , b~(q)J~, .. .).

3. A MINIMUM PRINCIPLE AND ITS CONSEQUENCES

In [2], attention is directed to positive-definite (hence, invertible) hardening matrices,
and two extremum principles are developed. As a necessary adjunct to our proof of con
vergence herein, we modify and slightly extend one of these principles, continuing to
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require only that H be positive-semidefinite. Thus, defining the following scalar averages
over the unit cube

Ue = r5~. Cb~ dV> 0

dp = fb~.b;PdV= fbyTHbYdV2 0,

and introducing the functional

(18)

(19)

(21)

(23)

(24)

1 1f/ 1 = 1(ue +dp) ="2 b~.b;dV>O, (20)

we establish that 11 is an absolute minimum corresponding to the continuum solution. Let
I? denote the value determined from any kinematically admissible, infinitesimal displace
ment field bUo. Then, as Sb~. Ab; dV = 0 (since surface tractions T are identically zero on
ST), we have

I?-I 1 = AIl =~f(Ab~.b;O-b~.Ab;)dV
and, after some algebra [substituting the constitutive equations OH5)],

I? - 11 = ~f{Ab~. CAb~ + Aby . HAby+ 2(b'tcr -b't) .byO} d V. (22)

The last term in the integrand is non-negative if the critical (but not necessarily the active)
slip systems coincide, since the negative of the product of (5a) and (5b) is positive or zero.
Whence, I? > 11 (unless bUo == bU) and we conclude that a correct basis for analytical
determination of convergence of kinematically admissible approximations is the investiga
tion of convergence in the incremental sense. That is, does the incremental solution of a
discrete model, which proceeds from an assumed known state of stress and strain within
the aggregate, converge to the incremental response ofthe continuum problem as we reduce
element sizes within crystal grains?

Consider the functional 11 = J(ue +ap ) for the discrete model presented herein, where
[from (2) and (l4H17)J

Ue = L b~(q) . C(q)b~(q)~
q

= (BobUO - NTbffQ(BobUo - NTbf) > 0

ap = ()fTNQ(BobUo - NTbf).

From (6), (12) (14H17) and the above, 11 can be written

1
1

= ~b{j(e). Kb{j(e)+ b{j(e) . BTSBobUo +D+tbfTPbf -bfTNQBobUo (25)

with D = ~BobUO)TS(BobUO), a constant. Since the displacement fields leading to the
solution equation (6) are kinematically admissible, 11 > 11 , Let If denote the functional
obtained by substituting into (25) the actual displacement values at the nodes and the average
values bY(q) of the actual incrementai plastic shear fields within the crystallite regions
(i.e.bY(q) Jl(q) = f by d~ for each q). Thus

If = ~bu(e) . Kbu(e) +bu(e) . BTSBobUo +D+~brTPbr -brTNQBobUo. (26)
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From (5b) and (6),
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bfTpbf = bfTNQBobUo (27)

br. (PoI' - NQBooUO
) ;;:::: O. (28)

Therefore, with the aid of (12) and the above,

IT -11 = -!<()V(e) - t50(e)fK(bu(e) - t5lJ<e»)+ -!<br - bffP(br - bf)

+br . (pt5f - NQBobUO) > 0 (29)
so that

IT > 11 > II> O. (30)

To establish convergence it is sufficient to prove that If, hence 11 , converges to II'

4. A CONVERGENCE PROOF FOR THE DISCRETE AGGREGATE MODEL

Utilizing (8), (15), (19), (23) and the element strain-displacement relation [1]

b~(q) == ~Tbii(qlx) = L ~~biiM,
M(q)

we define the following scalar averages:

(31)

We = fb~(e). C-lb~(e) dV = (BobUO)TQBobUo > 0 (33)

u: = (Bot5Uo-NTt5r)TQ(BobUo-NTt5r) > 0 (34)

d; = L b'Y~)H(q)b'Y(q)~ = t5rTHbr;;:::: 0 (35)
q

in which
b~*(e) = ~Tc5u*(e) = " RMt5u(e)M
~ (q) - (q) L. I'q

M(q)

such that

(36)

where h is a typical crystallite dimension and O(h) indicates the truncation error in the Taylor
series expansion. Then, from (26) and (32-35), Ii can be equivalently expressed

IT = !(w:-we)+-!(u:+d;). (37)

We first investigate convergence to zero of the first term, corresponding to solutions assum
ing elastic response of the aggregate. Denoting

(38)
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it is obvious from (32), (36) and (38) that OJ: = OJe+O(h). Also, from (29),

(39)

(40)

and, from (12), (33) and (38), We > OJe (the ordinary elasticity minimum principle). There
fore, OJe+O(h) = OJ: > We > OJe > 0 and [(12), (33), (39)]

O(h) > We-OJe > rM~(e).CAb~(e)dV> 0

from which OJ: and We converge to OJe with decreasing h and b~(e) converges to b~(e). (This
is analogous to the proof of convergence of the "finite element method" for linear elasticity
problems given in [4].)

Returning to (37), it is evident from (35) and the definition of bY(q) that d; converges to
dp , since the integrand converges locally over each crystallite. [We take H(q) = H(Y(q»,
where Y(q) is similarly defined as the volume average of y(x) over the crystallite.] It remains
to prove that u: converges to ue • From (7), (15) and (34),

u: = (b!:(e) +btsVATS- 1A(b!:le) +bts) = l)~l;l+~(q)VClq)(~l;l +b~(q»)~ > 0 (41)
q

where

(42)

Since, from the preceding analysis, ~(e) --+ b~(e) with decreasing h, we focus attention on
be(q)' The continuum fields b~s, bl;s correspond to the incremental elastic response of the
constrained cube due to the plastic "residual" microstrain field bl;P = NTby (with fb~s
.bl;s d V = 0). Denoting the strain field determined from the solution of the piecewise linear
displacement model by b;s, we have, analogous to (13) and consistent with (42),

KbOs = B[SNTbr (43)

so that, locally, ~(q) = C(;/(~(q) - N{q)bY(q», as can be confirmed by substituting (7) into
(42). The corresponding potential energy functional of the discrete solution is

and of the continuum solution

12 = ~f bl;s. C- 1bl;sdV - fbl;s. C- 1bl;PdV = -~f bl;s. C Ibl;sdV, (45)

whence [(43H45)],

(46)

Defining

(47)
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in which, similarly as in (36), b~*s = b~s+O(h), with b~~) = LAl(q) p~bU(s)M, then Ii = 12 +
O(h). Ii also can be expressed, analogous to (44),

Ii = !<5Us . Kbus-<5Us . BrSNTbr. (48)

Therefore [(43), (44), (48)],

Ii-12 = t{bus-50SfK(<5us-50S
) > O. (49)

Hence, 12 + O(h) = Ii > 12 > 12 and 12 -I> 12 as h -I> O. Moreover, substituting (46),

O(h) > ~f(~S-b;S). C-1(~S-b~S)dV > O. (50)

It follows that ~s -I> b~s, bes
-I> <5~s and, with the results from (40), u: converges to ue •

Thus, from (30), It and 11 converge to II and, from (29), since P is positive-definite, <51(q) -I>

lYt(q)' Finally, from (22), reading 11 in place of the more general I?,~ -I> b~ and the volume
average converges to the incremental macrostress &s, the desired result. (Q.E.D.)
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A6CTpaKT-PacwHpaeTcli H aHaJlHpH3yeTcli .C(anee .C(HcKpeTHali arrperaTHali Mo.C(eJlb, He.C(aBHO npe.C(JlO)K
eHHali aBTopoM [I), B CMblCJle OCHOBbl .C(JIli Ka'leCTBeHHblX Hccne.C(oBaHHil. B nOJlHKpHCTaJlJlJi'leCKoil. nnaCT
H'IOCTH. nOJlll .C(HCKpeTH30BaHHblX BHYTPeHHblX Hanpll)KeHHil. H npHpaweHHR .C(e<!>opMaullll, O.C(H03Ha'lHO
onpe.C(eJJeHHble He peweHHlI 3a.C(a'lll OrpaHH'IeHHOrO KBa.C(paTH'IHOrO nporpaMMllpOBaHllli. OKa3b1SaIOTCli
TO'lHO CXO.C(HMblMH K peweHHIO COOTBeTCTSYIOWeil: xpaeBOil. 3a.C(a'lH CnJlOWHOH cpe.C(b1. 3aTeM, 3Ta MO.C(eJJb
TO'lHO nO.C(TBep)K.C(eHa Kax paUHOHaJlbHOe npH6J1H)KeHHe npHrO.C(Hoe .C(Jlll paC'IeTHbiX IlCCJle.C(osaHIlH nOBen
eHllli arrperaTHoil: MOneilll.


